IOSG Weekly Brief:为什么我们看好零知识证明硬件加速

IOSG 阅读 903 2022-11-22 12:00:09

本文将主要讨论 ZKP 作为扩容方案的发展现状,从理论层面描述产生证明过程中主要需要优化的几个维度,并引深到不同扩容方案对于加速的需求。然后再围绕硬件方案着重展开,展望 zk 硬件加速领域的摩尔定律。

作者:Bryan, IOSG Ventures

封面:Photo by Milad Fakurian on Unsplash

本文为 IOSG 原创内容,仅做行业学习交流之用,不构成任何投资参考。如需引用,请注明来源,转载请联系 IOSG 团队获取授权及转载须知。

本文将主要讨论 ZKP 作为扩容方案的发展现状,从理论层面描述产生证明过程中主要需要优化的几个维度,并引深到不同扩容方案对于加速的需求。然后再围绕硬件方案着重展开,展望 zk 硬件加速领域的摩尔定律。最后,关于硬件 zk 加速领域的一些机会和现状,会在文末阐述。首先,影响证明速度的主要有三个维度:证明系统,待证明电路规模,和算法软硬件优化。

对于证明系统来说,凡是使用椭圆曲线(EC)的算法,也就是市面上主流的 Groth 16(Zcash), Galo2(Scroll), Plonk(Aztec, Zksync) 这些 zk-snark 算法,产生多项式承诺的过程中涉及的大数点乘(MSM),目前都有时间长(算力要求高)的瓶颈。对于 FRI-based 算法,如 ZK-Stark,其多项式承诺产生方式是 Hash Function,不牵扯 EC,所以并不涉及 MSM 运算。

证明系统是基础,待证明电路的规模也是核心的硬件优化的需求之一。近期讨论很火的 ZKEVM 据对以太坊的兼容程度不同,导致了电路的复杂程度的不同,比如 Zksync/Starkware 构建了与原生以太坊不同的虚拟机,从而绕开了一些以太坊原生的不适合利用 zk 处理的底层代码,缩小了电路的复杂长度,而 Scroll/Hermez 这样目标从最底端兼容的 zkevm 的电路自然也会更复杂。(一个方便理解的比方是,电路的复杂性可以理解为一辆巴士上的座位,比如普通日子下需要搭载的乘客数在 30 人以下,有些巴士选择了 30 人的座位,这些巴士就是 Zksync/StarkWare,而一年中也有一些日子有特别多的乘客,一般的巴士坐不下,所以有一些巴士设计的座位更多(Scroll)。但是这些日子可能比较少,会导致平时会有很多空余的座位。)硬件加速对于这些电路设计更复杂的电路更迫切,不过这更多是一个 Specturm 的事情,对于 ZKEVM 也同样有利无弊。

不同证明系统优化的需求/侧重点:

基本:

当一个待证明事物经过电路(如 R1CS/QAP)处理之后,会得到一组标量和向量,之后被用来产生多项式或者其他形式的代数形式如 inner product argument (groth16)。这个多项式依然很冗长,如果直接生成证明那么无论是证明大小或是验证时常都很大。所以我们需要将这个多项式进一步简化。这里的优化方式叫做多项式承诺,可以理解为多项式的一种特殊的哈希值。以代数为基础的多项式承诺有 KZG, IPA,DARK,这些都是利用椭圆曲线产生承诺。

FRI 是以 Hash Function 为产生承诺的主要途径。多项式承诺的选择主要是围绕几点 – 安全性,Performance。安全性在这里主要是考虑到在 set up 阶段。如果产生 secret 所使用的 randomness 是公开的,比如 FRI,那么我们就说这个 set up 是透明的。如果产生 secret 所利用的 randomness 是私密的,需要 Prover 在使用之后就销毁,那么这个 set up 是需要被信任的。MPC 是一种解决这里需要信任的手段,但是实际应用中发现这个是需要用户来承担一定的成本。

而上述提到的在安全性方面相对卓越的 FRI 在 Performance 并不理想,同时,虽然 Pairing-friendly 椭圆曲线的 Performance 比较卓越,但是当考虑将 recursion 加入时,因适合的曲线并不多,所以也是相当大的存在相当大的 overhead。

免责声明:
1.资讯内容不构成投资建议,投资者应独立决策并自行承担风险
2.本文版权归属原作所有,仅代表作者本人观点,不代表本站的观点或立场
上一篇:受 Alameda 影响面临关停 ,Ren Protocol 能否自救? 下一篇:艺术不死,只是以生成 AI 的形式存在

您可能感兴趣